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Experiments with single atoms in a cavity:
entanglement, Schrödinger’s cats

and decoherence

B y S. Haroche, M. Brune and J. M. Raimond
Laboratoire Kastler Brossel, Département de Physique de l’Ecole Normale

Supérieure, 24 rue Lhomond, F-75231 Paris, Cedex 05, France

We perform experiments with Rydberg atoms crossing one at a time a superconduct-
ing cavity containing a few microwave photons. The coupling between the atoms and
the cavity field is either resonant or dispersive. In the resonant case, quantum Rabi
oscillations induced by the vacuum or by a small coherent field are observed. These
signals reveals in a striking way the quantization of the field. Quantum Rabi oscilla-
tions are also used to prepare Fock states of radiation, to transfer information or to
produce entanglement between two successive atoms crossing the cavity. Dispersive
atom–field coupling is used to prepare and probe coherent superpositions of field
states with different phases (Schrödinger cat states). The progressive decoherence of
these states is observed. These experiments constitute fundamental tests of quan-
tum theory and shed light on the transition from quantum to classical in mesoscopic
systems.

1. Introduction

It is now possible to realize with atoms and cavities experiments which would until
recently have been considered of the purely ‘Gedanken’ type. These experiments
correspond to the simplest atom–radiation coupling situation. They involve a single
two-level atom interacting coherently with one mode of the field, either in its vacuum
state, or containing only a few photons (Haroche 1992; Berman 1994). The observed
signals illustrate the basic postulates of quantum mechanics and their analysis pro-
vide severe tests of our understanding of the least intuitive aspects of quantum theory,
which involve in particular non-local entanglement and mesoscopic state superposi-
tions. By allowing us to study how these state superpositions evolve into a mere
statistical mixture as a function of the ‘size’ of the system under study, these exper-
iments can also be viewed as a step towards the exploration of the transition from
the quantum to the classical world (Zurek 1981, 1982, 1991, 1997). In this short pre-
sentation, we briefly describe the very versatile experimental set-up which has made
these experiments possible and present a brief account of the most important results
obtained so far.

2. The atom–cavity set-up

These experiments (Brune et al. 1996a,b; Hagley et al. 1997; Mâıtre et al. 1997)
require very long-lived systems, strongly coupled to each other, in a well-controlled
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Figure 1. Scheme of the atom–cavity experimental set-up.

environment. We make use of superconducting microwave cavities resonant with a
millimetric transition at 51 GHz coupling two adjacing circular Rydberg states of
Rubidium (principal quantum numbers 51 and 50). The experimental set-up, whose
core is cooled to 0.6 K by a 3He–4He cryostat, is sketched in figure 1. The cavity C
is made of two spherical niobium mirrors facing each other in a Fabry–Perot con-
figuration (distance between mirrors: 2.7 cm). The cavity sustains a TEM Gaussian
mode with a 6 mm waist, and an effective volume of 0.7 cm3. The field decay time is
essentially determined by the smoothness of the mirror surface. Long damping times,
of the order of several milliseconds, have already been obtained, but all the exper-
iments described below have been performed with somewhat lower finesse cavities,
whose damping time Tcav is comprised between 100 and 200 µs. The cavity field is
excited either by the atoms themselves (resonant atom–field coupling), or externally,
by a microwave source S. In this latter case, a coherent field is prepared in C. It
is possible to tune the cavity in and out of resonance with the atomic transition by
slightly changing the distance between the mirrors. Alternatively, one can tune by
Stark effect the atomic transition frequency across the cavity resonance by varying
the electric field applied across the mirrors (a non-zero average field must in any case
be maintained between the mirrors in order to avoid the mixing of circular states
with Rydberg levels of lower angular momentum while the atoms cross C (Hulet &
Kleppner 1983; Nussenzveig et al. 1993)).

The circular Rydberg states n = 51 and 50 (called e and g, respectively, in the
following) correspond to a very large circular orbit (diameter 0.125 µm) and have
very long radiative damping times (30 ms). They behave as huge atomic antennae,
strongly coupled to radiation. The atoms, initially effusing from an oven O, are
optically pumped into one velocity class with the help of a laser beam exciting them
at an angle with respect to the atomic beam propagation (Doppler tuning of the
Rubidium resonance line in zone V ). The atoms are then prepared in box B in one
of the two states e or g by a succession of laser pulse excitations followed by adiabatic
radiofrequency transitions feeding angular momentum into the atom (Nussenzveig
et al. 1993). This preparation stage is pulsed, preparing bursts of circular atoms
which emerge from B at well-defined times, with well-controlled velocities (comprised
between 200 and 400 m s−1 with a ±0.4 m s−1 precision). The average number of
atoms in each burst is kept much below one, so that the probability to prepare two
atoms at a time remains small.
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After preparation, the atoms enter a small auxiliary cavity R1 in which a classical
pulse of microwave is optionally applied, turning e or g into a linear superposition
of these two states. The atoms then cross C during an interaction time in the few
10 µs range, shorter than the cavity field or atomic damping times. The coupling
between the atoms and the field in C is defined by the vacuum Rabi frequency
Ω/2π = 50 kHz, which corresponds to the rate at which the cavity mode exchange
a single photon with an atom located at cavity centre. When the atom moves across
the cavity, Ω appears as a Gaussian function of the atom’s position. Several Rabi
oscillations can occur during the atom–cavity crossing time. After C, the atoms cross
another auxiliary cavity R2, where a pulse of classical resonant microwave may be
applied, mixing again e or g. Finally, the atoms reach two field ionization detectors
De and Dg counting atoms in level e or g, with a 40% quantum efficiency. The time
resolution of the experiment allows us to know with a ±1 mm precision where each
atom is in the apparatus at any time, making it possible to subject successive atoms
to different interactions in R1, C and R2.

An experimental event consists in sending one atom, or two atoms separated by a
well-defined time interval, across the system and detecting them downstream in De

or Dg. The same sequence is repeated many times, with a repetition period longer
than the cavity C damping time, so that the same initial field can be prepared in C
at the beginning of each sequence. Results are obtained by extracting statistics from
the repeated sequences (single atom probability or joint two atom probabilities of
detecting the atoms in states e or g). A cavity with a very long damping time corre-
sponds to a very small decoherence rate, but requires very low repetition rates and
very long statistics acquisition times. In the experiments described below, in which
the cavity damping time was moderately long (100–200 µs), the repetition period
was 1.5 ms and samples used to extract joint two-atom probabilities corresponded
typically to 15 000 useful events, recorded in about two hours.

3. Resonant atom–field coupling experiments

In a first series of experiments, the cavity mode was tuned in exact resonance
with the e→ g atomic transition, so that photons could be emitted or absorbed by
each atom while it crossed C. This is a micromaser situation (Raithel et al. 1994)
restricted to single atom–single photon interactions (Haroche et al. 1982). We have
investigated in detail the phenomenon of quantum Rabi oscillation (Eberly et al.
1980). We have also used the atom–field resonant coupling to prepare and detect
non-classical Fock states, to demonstrate the operation of a quantum field memory
and to generate entanglement between successive atoms crossing the cavity.

(a ) Quantum Rabi oscillation: direct test of field quantization in a box
The simplest experiment (Brune et al. 1996a) is performed by sending an atom

in level e in the cavity and measuring the probability that the atom flips from e
to g. The auxiliary microwave zones R1 and R2 are not used. The measurement is
performed for various atom–cavity interaction times, which are obtained either by
changing the velocity of the detected atoms, or by Stark tuning the atomic transition
in resonance with the cavity mode during a fraction of the atom–cavity crossing time
(in this experiment, the atom’s velocity was not actively selected by optical pumping,
as described above, but only passively determined by a time of flight measurement).

Figure 2a shows the Rabi oscillation signal versus time obtained when the cavity
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Figure 2. Quantum Rabi oscillations. (a), (b), (c) and (d) Rabi nutation signals. (a) No injected
field and 0.06 (±0.01) thermal photon on average; (b), (c) and (d) coherent fields with 0.40
(±0.02), 0.85 (±0.04) and 1.77 (±0.15) photons on average. The points are experimental; the
solid lines are theoretical fits. (a′), (b′), (c′), (d′) Corresponding Fourier transforms. Frequencies
ranging as the square roots of successive integers are indicated by vertical lines. (α), (β), (γ), (δ)
Photon number distribution inferred from experimental signals (points). Solid lines: theoretical
thermal (α) or coherent ((β), (γ), (δ)) distributions.

is essentially in vacuum (save for a very small thermal field). Four complete Rabi
oscillations are observed, at the expected frequency Ω/2π close to 50 kHz. In fact, the
Rabi oscillation experienced by each atom occurs at a frequency Ω(r), which varies
with the position of the atom flying across C. The observed Rabi angle corresponds
to the accumulated evolution integrated over the atom’s flight. It is convenient to
define an effective interaction time t by equating the accumulated Rabi phase to Ωt,
where Ω is the Rabi coupling at cavity centre. This is the time t represented on the
x-axis in figure 2. The observed oscillation corresponds to the coupling of the |e, 0〉
and |g, 1〉 states of the ‘atom + field’ system and describes the reversible evolution
of the atom between e and g, correlated to the emission and absorption of one
photon in C. It can be interpreted in the coupled oscillator model of the Thomson
theory of atom–matter interaction, as resulting from the resonant coupling of the
atom and field ‘oscillators’ which reversibly exchange their energy. The damping of
the oscillation is due to the inhomogeneity of the Rabi frequency across the atomic
beam diameter, to detectors imperfections as well as to various decoherence processes
including cavity and atom damping. Note that this vacuum Rabi oscillation signal is
the time domain counterpart of the vacuum Rabi splitting observed in the spectrum
of the atom–empty cavity system (Thompson et al. 1992; Bernardot et al. 1992).
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Figures 2b–d show the Rabi oscillation signal when the cavity contains a coher-
ent field with an average photon number equal, from top to bottom, to n = 0.40
(±0.02), 0.85 (±0.04) and 1.77 (±0.15). The signal becomes then a superposition
of several frequency components, which correspond to the various photon numbers
present in the field. The points are experimental and the lines are theoretical fits.
The beating between these components gives rise to collapse and revival of the oscil-
lations, which have been predicted by Eberly et al. (1980). The Fourier transforms of
the Rabi signals, shown in figures 2a′–d′, exhibit peaks at the frequencies Ω

√
n+ 1

corresponding to the Rabi frequency in the field of n photons (n = 0 to 3). These
signals thus demonstrate clearly that the Rabi frequency, classically proportional to
the field amplitude, is in fact a discrete quantity, providing a direct evidence of field
quantization in a box. Note in figure 2a′ the small peak at Ω

√
2 which is an evi-

dence for the presence of a very small residual thermal field in the cavity (average
blackbody photon number at 0.6 K: 0.05). Figures 2α–δ show the distribution of the
Fourier components amplitudes, which exhibit directly the photon number distribu-
tions in the small thermal field (figure 2α) and in the coherent fields with increasing
amplitudes (figure 2β–δ, Poisson distribution).

(b ) Quantum memory with a single photon in the cavity
Let us come back to the situation in which an atom interacts with an empty

cavity during an effective time t such that Ωt = π. The atom exits then with unit
probability the cavity in level g, leaving a single photon in it. This photon can be
read out after a delay T by sending another atom in level g. If the interaction time
of this atom with C is also π/Ω , it absorbs the photon in a time reversed process
and ends up in e. This is revealed by measuring the joint probability Pge to detect
the first atom in g and the second in e, which must be equal to unity. In fact, there
is a finite probability, exp(−T/Tcav), that the photon has decayed between the two
atoms, resulting in the second atom remaining in level g. Thus, Pge evolves from one
to zero when the delay between the two atoms is increased. We have observed this
effect and measured in this way directly the decay of a single photon in C (Mâıtre
et al. 1997).

We have also sent in the empty cavity C an atom subjected in R1 to a 1
2π pulse

of microwaves (frequency ν). The atom is thus prepared before entering C in a
superposition of e and g states with equal weights. If the condition Ωt = π is satisfied,
the e part of the atom’s wave function emits with unit probability a photon in
C, while the g part remains unaltered. As a result, the atomic state superposition
is mapped onto the field, as a superposition of 0 and 1 photon states, while the
atom ends up in level g. We prepare in this way a field in C which has an average
photon number equal to 1

2 , and a well-defined phase, directly related to the phase
of the classical microwave field in R1. The atom has been used as a carrier of phase
information from R1 to C.

In order to read out this information, we send after a delay T a second atom,
prepared in level g, which again undergoes a π pulse in C. The quantum coherence
is then mapped onto this atom, as a superposition of e and g states, and the cavity
ends up empty. In order to reveal this coherence, we apply a 1

2π pulse of classical
microwave to the second atom in R2, this pulse having the same frequency ν and
phase as the one applied on the first atom in R1. The cavity R2 followed by the
energy counters acts as a detector of the second atom’s coherence. The probability
of detecting this atom in e or g exhibits oscillations versus ν. These oscillations are
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Figure 3. Transfer of coherence between two atoms: conditional probability Πge(ν) of detecting
the second atom in e provided the first one is detected in g versus the frequency ν of the
microwave pulses applied to the first atom in R1 and to the second in R2. The delay between
the two microwave pulses in R1 and R2 are 301, 436 and 581 µs, respectively, from (a) to (c).

reminiscent of the usual Ramsey fringes observed when a single atom is subjected to
two pulses of microwaves at different times (Ramsey 1985). Here, however, the two
pulses are acting on two different atoms and the coherence is transferred between
them via the cavity field in C. Figures 3a–c show the fringe signals which reveal this
coherence transfer, for three different time intervals between the atoms. Note that
when this time is increased, not only the fringe period, but also the fringe amplitude
decreases. This decrease reveals the field decay in the cavity. We measure by this
experiment the field amplitude, and not, as before, the field energy damping, which
explains that we find a characteristic decay time of the fringe amplitude twice as long
as that in the previously described single photon experiment (Mâıtre et al. 1997).

In these resonant atomic correlation experiments, a quantum information, which
can be described as a qubit (DiVincenzo 1995; Ekert 1996), is transferred between
two atoms via a one photon field stored in the cavity. In the end, the cavity field is
restored to its vacuum state and the cavity acts as a catalyst in the process, which
can be described as the operation of a quantum memory. Such a mapping process
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will be essential in the implementation of a cavity QED quantum gate (experiment
in progress, Domokos et al. 1995).

(c ) Cavity induced atom–atom entanglement
The cavity can also be used to prepare non-local entanglement between an atom

and the field or between two atoms, according to a method proposed by Cirac &
Zoller (1994). Let us send a first atom in level e across an empty cavity, the effective
atom–cavity interaction time being such that Ωt = 1

2π. The atom has then equal
probabilities to stay excited or to decay to level g while emitting a single photon
in C. The system ends up after the interaction in the entangled state |e, 0〉 − |g, 1〉.
This entanglement can be transformed into an atom–atom correlation by sending a
second atom prepared in g across C, setting the interaction time so that Ωt = π.
The photon left by the first atom is then absorbed by the second one with unit
probability, leaving the cavity empty and the atoms in the entangled state

|ΨEPR〉 = 1√
2(|e1, g2〉 − |g1, e2〉), (3.1)

where the indices label the first and the second atom, respectively. The cavity is a
catalyst entangling the two atoms.

The entangled atom system is an exact analogue of the spin pair described in the
original Einstein–Podolsky–Rosen article (Einstein et al. 1935). One can assimilate
each of the two atoms with a spin- 1

2 particle, the e and g states corresponding
to the + 1

2 and − 1
2 states quantized along a direction 0z. The entangled pair is the

rotationally invariant ‘spin zero’ state of the system. It can equivalently be expressed
in any basis corresponding to another quantization direction. If the new axis is taken
in the x0y plane instead of 0z, in a direction making an angle φ with 0x, the new
spin eigenvectors are of the form |e〉 + eiφ|g〉 and the same entangled pair can be
written (within an irrelevant overall phase factor) as

|ΨEPR〉 = 1√
2 [(|e1〉+ eiφ|g1〉)(|e2〉 − eiφ|g2〉)− (|e1〉 − eiφ|g1〉)(|e2〉+ eiφ|g2〉)]. (3.2)

Equations (3.1) and (3.2) express a perfect anticorrelation between the states of the
two atoms, whichever basis is chosen for the detectors. It cannot be explained by
classical arguments, which is the essence of the EPR paradox.

We have performed two-atom counting experiments to demonstrate these corre-
lations (Hagley et al. 1997). To analyse the entanglement in the energy basis, we
directly detect the state of the atoms after they leave C, without using R1 and R2.
Ideally, we should find that the joint probabilities to detect the atoms in the various
combinations of e and g levels are Peg = Pge = 1

2 , Pee = Pgg = 0. We find instead
experimentally Peg = 0.44, Pge = 0.27, Pee = 0.06, Pgg = 0.23. The difference with
the ideal case is due to the photon decay between the two atoms as well as imper-
fections in the Rabi pulses. A quantitative analysis of the experiment shows that we
prepare EPR pairs with a 63% purity (Hagley et al. 1997).

In order to detect the ‘transverse’ entanglement described by equation (3.2), we
subject both atoms, after they have interacted with C and before detecting their
energy, to a 1

2π pulse in R2. Note that R1 is not used in this experiment. The
succession of R2, followed byDe andDg, amounts to a detector of the atomic coherent
superpositions |e〉+ eiφ|g〉, where φ is the phase of the pulses applied in R2.

If both atoms were crossing R2 simultaneously, one would again expect, according
to equation (3.2), a perfect anticorrelation between the e and g detectors. In fact,
the detection of the first atom in e immediately ‘collapses’ the second atom into
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the anticorrelated state which corresponds to an instantaneous detection in g. The
second atom coherence precesses, however, during the time interval between the
two detection events. Depending upon the phase accumulated between the atomic
coherence and the microwave pulses in R2, the probability of detecting the second
atom in e or g should vary between 0 and 1. This modulation is again reminiscent of
a Ramsey fringe signal. However, the two microwave pulses are applied to different
atoms and the modulation reveals the non-local correlations between them.

This oscillation, shown in figure 4, is observed in the conditional probability Πe1,e2

of detecting the second atom in e, knowing that the first was found in e (dashed
line), and also in the conditional probability Πg1,e2 of finding the second atom in
e knowing that the first was detected in g (solid line). The two modulations are in
phase opposition. Detecting the first atom in g sets indeed the second atom coherence
with an initial phase opposite to the one obtained if the first atom was detected in
e. Note that the fringe contrast is only 25%, far from the ideally expected value
of 100%. We attribute the reduced contrast to photon decay in C between the two
atoms, as well to imperfections in the various Rabi pulses.

This experiment is to our knowledge the first one in which atoms have been entan-
gled at a distance (the maximum separation was 1.5 cm). Other proposals to entangle
atoms and to investigate Bell’s inequalities with atom pairs have been made (Fry et
al. 1995). By combining resonant and dispersive interactions, one could generalize
this scheme to more than two atoms and prepare, for example, triplets of entangled
atoms of the form |e, e, e〉 − |g, g, g〉 (Greenberger et al. 1990; Cirac & Zoller 1994;
Haroche 1995). The manipulation by cavity QED techniques of many atom entangle-
ment opens the way to new studies of quantum non-locality and tests of generalized
Bell’s inequalities.

4. Dispersive atom–field coupling: Schrödinger’s cats and
decoherence

We now turn to dispersive experiments in which the atomic transition frequency
ω0 and the field mode frequency ω differ by a small quantity δ, large compared to
Ω and to the cavity line width (typically, δ/2π is varied between 100 and 700 kHz).
A pulsed classical microwave source S is used to inject a small coherent field in C
(average photon number between zero and ten) and the non-resonant interaction
of this field with the atoms is subsequently studied. Energy conservation prevents
the emission or absorption of photons by the atoms and their interaction with C
becomes purely dispersive. In fact, the vacuum Rabi frequency being a Gaussian
function Ω(r) of the atomic position, the atom–field interaction is turned on and
off adiabatically as the atom follows the slowly varying field mode envelope. The
adiabatic condition makes photon exchange very unlikely, even at small atom–cavity
detunings (δ/2π = 100 kHz). The atomic transition undergoes a frequency shift equal
to Ω2/2δ per photon, while the cavity mode is shifted by ±Ω2/4δ when a single atom
is placed at cavity centre. This shift takes opposite values for an atom in levels e and
g (Haroche 1992).

Typical frequency shifts Ω2/8πδ of the order of 6 kHz are achievable when δ/2π =
100 kHz, corresponding to index changes N −1 = Ω2/8ωδ of the order of 10−7. Such
an effect is produced by the presence of a single atom in the volume of the cavity
mode (about one atom per cm3). This corresponds to an index per atom about
15 orders of magnitude larger than those produced by ‘ordinary atoms’ in usual
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Figure 4. EPR atomic entanglement: conditional probabilities Π (e1, e2) (circles) and Π (g1, e2)
(squares) of measuring the second atom in level e when the first one has been found in e or
g, respectively, plotted versus the frequency ν of the pulses in R2. The lines connecting the
experimental points have been added for visual convenience.
Figure 5. (a) Pictorial representation in phase space of a coherent field state. (b) The two
components of the field in equation (4.1) which are correlated to the two atomic states e and g.

transparent media. The field phase shift produced by a single atom is obtained by
multiplying the frequency shift at cavity centre by the effective atom–field interaction
time. With atoms whose velocities can be varied between 200 and 600 m s−1, this
time varies between 15 and 40 µs, corresponding to phase shifts Φ = Ω2t/4δ in the
range 0.5–1.5 rad. This is quite a macroscopic phase change. The most important
feature to consider here is that the single atom index is a quantum object.

This quantum phase shift effect can be used to generate superposition of field
states with different phases (Brune et al. 1992). A single atom is prepared in a linear
superposition of e and g by a 1

2π pulse in R1, while a coherent field corresponding
to a complex amplitude α is injected in C. When the atom crosses C, it imparts to
the field two opposite phase kicks, ±Φ, depending upon whether it is in e or g. As a
result, the combined atom field system becomes

|Ψ〉 = 1√
2(|e, αeiΦ〉 − |g, αe−iΦ〉), (4.1)

which describes an entangled atom–cavity state in which the energy of the atom is
correlated to the phase of the field. A coherent field can be represented as an arrow
in phase space whose length and direction are associated with the amplitude and
phase of the field (see figure 5a). The tip of the arrow lies in a circle of unit radius
describing the conjugated uncertainties in field amplitude and phase. Equation (4.1)
indicates that this arrow is in fact a ‘meter’ which assumes two different directions
when the atom is in e or g (figure 5b). One can say that the dispersive interaction
realizes an essential step in a ‘measurement’ process in which the ‘field arrow’ is
used to determine the atom’s energy. One can also adopt Schrödinger’s metaphor
(Schrödinger 1935) and say that the +Φ and −Φ field components are laboratory
versions of the ‘live’ and ‘dead’ states of the famous cat trapped in a box with an
atom in a linear superposition of its excited and ground states.

After C, the atom undergoes another 1
2π pulse in R2, phase coherent with the

pulse in R1 and is detected by De or Dg. Repeating the experiment many times,
we reconstruct the probability of detecting the atom in g versus the frequency ν
applied in R1 and R2. The experiment (Brune et al. 1996b) is performed either with
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Figure 6. Ramsey fringes in the probability versus ν of detecting the atom in level g: (a) C
empty, δ/2π = 712 kHz; (b)–(d) C stores a coherent field with |α| = √9.5 = 3.1, δ/2π = 712,
347 and 104 kHz, respectively. Points are experimental and curves are sinusoidal fits. Inserts
show the phase space representation of the field components left in C.

an empty cavity detuned by δ/2π = 712 kHz (figure 6a), or with a cavity containing
initially a coherent field with an average of 9.5 photons, with decreasing values of
the detuning δ (figure 6b–d). The fringes observed when the cavity is empty are a
typical Ramsey signal, which can be interpreted as an atomic interference effect.
The atom can be transferred from e to g either in R1 (in which case it crosses C
in level g) or in R2 (it then crosses C in level e). Since the two ‘paths’ cannot be
distinguished, the corresponding amplitudes interfere, leading to fringes in the final
probability (figure 6a).

When a coherent field is initially present in C, it gets a phase kick which could
allow us to determine in principle the state of the atom when it was in C. Such
a measurement, even if it remains virtual, must, according to the complementarity
principle (Scully et al. 1991; Haroche 1992; Pfau et al. 1994; Chapman et al. 1995),
destroy the interference effect and wash out the Ramsey fringes. If δ is relatively
large, and Φ accordingly small (figure 6b), the field components overlap so that the
‘measurement’ of the atom’s energy remains ambiguous. The potential knowledge of
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the atomic path is only partial and the fringes remain visible, albeit with a reduced
contrast. This contrast decreases further when δ becomes smaller (figure 6c) and
vanishes altogether when δ is so small that the overlap between the field components
is negligible (figure 6d). The vanishing of the fringe contrast demonstrates that a field
with non-overlapping components has been prepared in C. A quantitative analysis
shows that the fringe signal is fully described by the overlap integral between the
two field components, its modulus yielding the fringe contrast and its phase fixing
the phase of the Ramsey fringes. From this phase shift (clearly observable in figure 6
when Φ is changed) we can deduce the average number of photons in C (n = 9.5 in
this experiment).

Theory predicts that coherent field states superpositions of the kind described by
equation (4.1) are fragile and subject to decoherence, when the number of photons, or
the angle Φ between the field components, become large (Zurek 1981, 1982; Caldeira
& Leggett 1983; Joos & Zeh 1985; Walls & Milburn 1985; Brune et al. 1992; Omnès
1994; Goetsch et al. 1996). In order to check the coherence of the superposition
and to study how it gets transformed with time into a mere statistical mixture, we
have probed the ‘cat state’ with a second atom, crossing the cavity after a delay
following a proposal of Davidovich et al. (1996). The probe has the same velocity as
the first atom and produces identical phase shifts. Since it is also prepared into a
superposition of e and g, it again splits into two parts each of the field components
produced by the first atom.

The final field state exhibits then four components, two of which coincide in phase.
Whether the two atoms have crossed C in the e, g, or in the g, e combination, the
net result is to bring back the phase of the field to its initial value. After the atomic
states have been mixed again in R2, there is no way to tell in which state the atoms
have crossed C (e, g or g, e combination), since the second atom has partially erased
the information left by the first one in the field (Scully & Walther 1989). As a result,
two ‘paths’ associated with the atom pair are indistinguishable. The contributions
corresponding to the e, g and g, e paths lead, in the joint probabilities Pee, Peg, Pge
and Pgg, to the presence of interfering terms. It is convenient to define an atomic
correlation signal η by the following combination of joint probabilities:

η =
Pee

Pee + Peg
− Pge
Pge + Pgg

. (4.2)

If the state superposition survives during the time interval T between the atoms, η
ideally takes the value 1

2 , whereas it vanishes when the state superposition is turned
into a statistical mixture. The result of the η measurement versus T is shown in
figure 7 for two different ‘cat’ states produced by the first atom (these states are
depicted in the inserts). The points are experimental and the curves theoretical.
The maximum correlation signal is 0.18, and not 0.5, because of the limited fringe
contrast of our Ramsey interferometer. We see that decoherence occurs within a time
much shorter than the cavity damping time and is more efficient when the separation
between the cat components is increased. The agreement between experiment and
theory is quite good.

This decoherence process is due to the loss of photons escaping from the cavity via
scattering on mirror imperfections. Each escaping photon can be described as a small
‘Schrödinger kitten’ copying in the environment the phase information contained in
C (Zurek 1997). The mere fact that this ‘leaking’ information could be read out to
determine the phase of the field is enough to wash out the interference effects related
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Figure 7. Decoherence of a Schrödinger cat: two-atom correlation signal η versus T/Tr for
δ/2π = 170 kHz (circles) and δ/2π = 70 kHz (triangles). Dashed and solid lines are theoretical.
Inserts: pictorial representations of corresponding field components separated by 2Φ.

to the quantum coherence of the ‘cat’ state. In this respect, we understand that
decoherence is also a complementarity phenomenon. The short decoherence time of
our Schrödinger cat, of the order of Tcav/n, is also explained by this approach. The
larger the photon number, the shorter is the time required to leak a single ‘photon-
copy’ in the environment. This experiment verifies the basic features of decoherence
and vividly exhibits the fragility of quantum coherences in large systems.

5. Conclusion

These experiments are first steps towards more elaborate manipulations of systems
made of a few atoms and photons in situations where the coupling to the environment
can be minimized and, to some extent, controlled. We are planning to entangle
more atoms, to study Schrödinger cat states with larger photon numbers and to
prepare field states delocalized in two or more separate cavities. The time evolution
of these systems will be studied and ways to slow down their decoherence or to
reverse its effects will be investigated. Other groups are exploring related Cavity
QED phenomena in the microwave (Raithel et al. 1994) or in the optical domains
(Kimble 1994). Strong similarities also exist between our experiments and the one
being performed or planned with ions oscillating in a trap (Monroe et al. 1995;
Cirac et al. 1996). In the latter case, the internal states of the ions are entangled
to the vibrational degrees of freedom of the ions, which replace the field excitation
of the Cavity QED experiments. The hamiltonians describing the evolution of these
systems look very much alike. From both kinds of experiments, we are bound to
learn more about the transition from quantum to classical behaviour in mesoscopic
systems (Zurek 1981, 1982, 1991, 1997).
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